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Abstract
Introducing  -symmetric generalized Scarf-II potentials into the three-coupled nonlinear
Gross–Pitaevskii equations offers a new way to seek stable soliton states in quasi-one-
dimensional spin-1 Bose–Einstein condensates. In scenarios where the spin-independent
parameter c0 and the spin-dependent parameter c2 vary, we use both analytical and numerical
methods to investigate the three-coupled nonlinear Gross–Pitaevskii equations with
 -symmetric generalized Scarf-II potentials. We obtain analytical soliton states and find that
simply modulating c2 may change the analytical soliton states from unstable to stable.
Additionally, we obtain numerically stable double-hump soliton states propagating in the form of
periodic oscillations, exhibiting distinct behavior in energy exchange. For further investigation,
we discuss the interaction of numerical double-hump solitons with Gaussian solitons and
observe the transfer of energy among the three components. These findings may contribute to a
deeper understanding of solitons in Bose–Einstein condensates with  -symmetric potentials
and may hold significance for both theoretical understanding and experimental design in related
physics experiments.

Keywords: three-component soliton states,  -symmetric generalized Scarf-II potentials, Bose–
Einstein condensates, Three-coupled nonlinear Gross–Pitaevskii equations

1. Introduction

The phenomenon of a marked increase in wave-like behavior
occurs in atomic gases as temperatures decrease, leading to
special physical properties such as superfluidity [1–3],
superconductivity [4, 5], and quantum entanglement [6–8], is
referred to as Bose–Einstein condensates (BECs). With the
observation of spinor BECs in the gas of spin-1 Na23 atoms
[9], interests in related theories are sparked, which drive the
exploration of various new phenomena, including spin con-
figurations [10, 11], quantum magnetization [12, 13], and the
second-order Zeeman effect [14–16]. In recent years, methods
involving time-dependent nonlinearity manipulated by Fes-
hbach-resonance techniques have sparked research interest
[17–20]. For instance, Feshbach-resonance is utilized to
control scattering lengths, and numerical methods are

employed to establish the complete stability of solitons [17].
Simultaneously, physical techniques enable control over the
collapse and expansion in BECs [18]. Furthermore, methods
for modulation of BEC systems involving external potentials
with spatiotemporal dependencies have also been investigated
[21–23]. Specifically, numerous studies focus on solitons in
BECs or spinor BECs, with a primary focus on scenarios that
only involve real external potential while a fraction further
introduce gain-and-loss distribution manifested as imaginary
component [24–26]. Moreover, there has been relatively scant
research on modulating stable solitons in spinor BECs based
on the concept of  -symmetry [27–30], i.e. external
potential and gain-and-loss distribution must satisfy the parity
conditions.  -symmetry was first proposed by Bender et al
in 1998, and it has found significant applications in various
fields including optics [31–34], matter waves [35, 36], mag-
netics [37, 38], acoustics [39, 40], and electronics [41, 42]. In
dissipative systems, the  -symmetry of complex potentials

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing.

All rights, including for text and data mining, AI training, and similar technologies, are reserved. Printed in China Communications in Theoretical Physics

Commun. Theor. Phys. 77 (2025) 045001 (11pp) https://doi.org/10.1088/1572-9494/ad8c27

∗ Author to whom any correspondence should be addressed.

0253-6102/25/045001+11$33.00 iopscience.org/ctp | ctp.itp.ac.cn1

mailto:yjshen2018@cau.edu.cn
https://doi.org/10.1088/1572-9494/ad8c27
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/ad8c27&domain=pdf&date_stamp=2024-12-20
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/ad8c27&domain=pdf&date_stamp=2024-12-20


is a necessary condition for the existence of soliton families
[43]. Despite the presence of gain and loss, the linear spec-
trum of the system can still be entirely real [44], allowing all
linear modes to exhibit regular wave behavior as in con-
servative systems. Various  -symmetric potentials have
been applied to BEC research since Klaiman et al proposed
considering BECs in double-well potentials in 2008 [45],
leading to an increasing number of studies on solitons in
BECs [46–48].

The spinor BECs has 2F+ 1 components. Governed by
the variational principle, the evolution of the wave function in
quasi-one-dimensional spin-1 BECs can be expressed using
the three-coupled nonlinear Gross–Pitaevskii equations
(GPEs) in the following form [49–53]:
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where ( ), ,0
TY = Y Y Y+ - , Ψj(ζ, τ) ( j=+ , 0, −) is the wave

function of ζ, τ which describe the transverse coordinate and
propagation time respectively. And the asterisk stands for the
complex conjugate, ÿ is the reduced Planck constant, m is the
atomic mass and ˆ ( )Vj z ( j=+ , 0, −) stands for the real external
trap potential. Here, the mean-field coupling constants b0 and b2,
which denote the interactions among the three components Ψj(ζ,
τ) ( j=+ , 0, −) responsible for spin-independent and spin-
dependent collisions between identical spin-1 bosons, taking the
form b0= πÿ2(a0+ 2a2)/3m and b2= πÿ2(a2− a0)/3m where
a0 and a2 represent the s-wave scattering lengths within the
symmetric channels characterized by the total spin of the col-
liding atoms, F= 0 and F= 2, respectively [54–56].

In this paper, considering the transformation ( ), ,0Y Y Y + -

( ), 2 ,0y y y+ - , x 2mz=  , t= τ/ÿ, the dimensionless
three-component GPEs are formed as:
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where Uj(x)=Vj(x)+ iWj(x) ( j=+ , 0, −) is the  -symmetric
generalized Scarf-II potential [57, 58] which can modulate the
degree of the energy distribution of matter-wave solitons pre-
sented under the external potential well and Wj(x) ( j=+ , 0, −)
represents the gain-and-loss distribution. Since the introduction of

the concept of  -symmetry, achieving a balance between gain
and loss in quantum systems has been a long-standing goal in
quantum mechanics, and it has only recently been realized
experimentally [59]. Such  -symmetric Scarf-II potentials in a
spinor BEC can possibly be realized by creating arbitrary optical
potentials in time average [60] and also the experimental reali-
zation of localized loss [61–63] and of localized gain [64]. The
concrete forms of the  -symmetric generalized Scarf-II
potential are shown as:
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with vj, αj, wj ( j=+ , 0, −), and n> 0 being all real-valued
potential parameters, which can modulate the structure of
 -symmetric potential. Clearly, when αj= 0 or n= 1
(vj+αj≠ 0, j=+ , 0, −), the complex potential (3) transforms
into the classical Scarf-II potential [65–67]. As the case of
c0= c2< 0 has been investigated in the references [68, 69],
yielding analytical solutions of equations (1) under  -sym-
metric Scarf-II potential and  -symmetric harmonic-Hermi-
tian-Gaussian potential, along with results on different types of
soliton collisions, this paper primarily focuses on the scenarios
where c2= 0.1 (antiferromagnetic) and c2=− 0.5 (ferromag-
netic) under  -symmetric generalized Scarf-II potentials.

The subsequent sections of this paper are organized as
follows. In section 2, we explore the soliton states of
equations (2), obtaining its families of analytical soliton states
under  -symmetric generalized Scarf-II potentials. We con-
duct linear stability analysis, distinguishing stable and unstable
regions. The results are validated through dynamic evolution
with 5% perturbations. In section 3, we utilize the power-con-
serving squared-operator methods [44] to generate families of
numerical soliton states for equations (2). A detailed invest-
igation of points on the curves is carried out, obtaining the
evolution of corresponding stable and unstable numerical soli-
tons. Some analytical soliton states, numerical single-hump
soliton states, and numerical double-hump soliton states are
chosen to interact with exotic Gaussian solitons. Finally, our
conclusions are presented in section 4.

2. Analytical soliton states

With the stationary states transformation ( ) ( )x t x, ej j
ti jy f= m

( j=+ , 0, −), the three-component GPEs can be derived as
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where μj ( j=+ , 0, −) represents the real chemical potential.
For obtaining the soliton states of equations (4), we utilize the
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To demonstrate the stability of soliton states, we perform
the linear stability analysis on the obtained soliton solutions
ψj(x, t) ( j=+ , 0, −) of Equation (2). Substituting the per-
turbed solutions (ò= 1)
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into equations (2) yields an eigenvalue problem LY= δY,
where δ stands for the eigenvalue, fj(x), gj(x) ( j=+ , 0, −) are
components of the corresponding eigenfunction, Y =
( )f g f g f g, , , , ,1 1 2 2 3 3

T, and the specific form of L is shown in
appendix.

For the given eigenvalue problem, we discretize the
differential operator into a matrix using spectral methods
[70, 71] and obtain the numerical values for δ. Considering
the inherent errors in numerical methods, when the maximum
of ∣ ( )∣Im d is sufficiently small (∣ ( )∣Im 10 5d < - ), δ can be
approximated as a real number. In this case, the solutions
ψj(x, t) ( j=+ , 0, −) can be considered linearly stable. This
theoretical assumption is further validated through numerical
evolution with 5% perturbations.

As a result, when we choose the system parameters as
c0= 1, c2=− 0.5, the curve of analytical soliton family for n
concerning the atomic densities of soliton can be obtained, as
illustrated in figure 1(a1). The atomic densities are defined as
Pj= ∫|ψj(x)|

2 dx ( j=+ , 0, −), and the energy flux can be
described by introducing the Poynting vector Sj =
( )* *i 2j j x j j x, ,f f f f- ( j=+ , 0, −) [72]. Due to constraints on
the system parameters for analytical soliton states, only sce-
narios under the special condition where P+= P0= P−= P
are studied in this paper. Through linear stability analysis, we
distinguish the stable and unstable portions of the curve. The
unstable regions are indicated by the red dashed lines, while
the stable regions are represented by the blue solid lines. We
select one point from each of the stable and unstable sections
on the curve for further investigation. Point A in figure 1(a1)
is selected from the unstable region, corresponding to
P= 1.6000 and n= 0.5. In figure 1(b1)–(b3), we present its
evolutionary results after undergoing 5% perturbations as
initial conditions and the corresponding eigenvalue distribu-
tion is reflected in figure 1(b4). Point B in figure 1(a1) is
chosen from the stable region, with P= 0.8000 and n= 1.5.
Similarly, in figure 1(c1)-(c4), we illustrate its evolutionary
results with 5% perturbations, along with the corresponding

eigenvalue distribution. Clearly, the soliton states corresp-
onding to point A is unstable, while that of point B is stable,
confirming the accuracy of linear stable analysis. Moreover,
we observe that as the value of n increases from 0.5 to 1.5, the
atomic density decreases by just half, with αj remaining
constant and |vj| ( j=+ , 0, −) increasing. This suggests that
higher values of |vj| ( j=+ , 0, −) may correspond to more
stable soliton states.

When the value of c2 is changed from −0.5 to 0.1, the
curve of the obtained analytical solution family exhibit the
same shape and position, but the stable region is significantly
enlarged, as shown in figure 1(a2). From the curve in
figure 1(a2), we select point C with the same coordinates as
point A for further investigation. In figure 1(d1)-(d4), we
present its evolutionary results after undergoing 5% pertur-
bations as initial conditions and the corresponding eigenvalue
distribution. However, the evolution corresponding to point C
is stable, indicating that increasing c2 from −0.5 to 0.1 can
decrease the value of αj, and smaller αj ( j=+ , 0, −) values
may correspond to stable solitons.

3. Numerical soliton states

Obtaining the analytical solution of equations (2) demands
stringent system parameter specifications, rendering the
implementation of BECs experiments challenging. Conse-
quently, to surmount these limitations and manipulate the
propagation coefficient, numerical methods are employed in
our research endeavors.

In our numerical investigation, we first focus on the case
when c0= 1 and c2=− 0.5. With the system parameters
chosen as wj= 2.5, vj=− 3.8, and αj=− 0.4 ( j=+ , 0, −),
we present families of single-hump numerical soliton states in
figure 2(a1)-(a3). Clearly, as n grows, the entire curve relo-
cates towards smaller μ values. We further investigate points
D and E selected from the curves shown in figure 2(a1)-(a3).
Point D corresponds to P+= 3.6600, P0= 4.6321, P−=
5.3079, μ+= 1.8563, μ0= 1.8555, μ−= 1.8571; point E
corresponds to P+= 4.0000, P0= 5.0624, P−= 4.5376,
μ+= 1.8724, μ0= 1.7685, μ−= 2.0890. By performing lin-
ear stability analysis on the soliton states corresponding to
these three points, we ascertain that the soliton states
corresponding to point D is stable, and the stability of the
soliton states corresponding to point E is unstable. Similarly,
we validate these findings by conducting numerical evolution
with 5% perturbations.

Next, we investigate the numerical families of double-hump
soliton states when c0= 1 and c2= 0.1. Given the constancy of
other conditions, the numerical double-hump solution families
across various n values exhibit significant overlap, hence in
figure 3, we only show the scenario for n= 2. We change the
values of wj from 2.5 to 0.8, vj from −3.8 to −6, while keeping
the values of αj ( j=+ , 0, −) unchanged. Similarly, we further
investigate points F and G selected from the curves shown in
figure 3(a1)-(a3). Figure 3(b1)-(b4) and figure 3(d1)-(d4) depict
the progression of stable soliton states respectively, along with
their associated eigenvalue distributions. Of note, as shown in
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figure 3(b1)-(b3), the double-hump soliton states corresponding
to point F exhibit periodic oscillations while conserving the
energy during propagation, which can be seen as a form of
energy exchange between soliton states. Furthermore, compared
to previous studies where all three soliton states exhibited peri-
odic oscillations, the phenomenon of energy exchange only

existing between ψ+ and ψ0, with ψ− remaining constant, might
be relatively infrequent. To further investigate the oscillatory
behavior of the double-hump soliton states, the total number
energy flux from the numerical solutions is investigated. Point G
from figure 3(a1)-(a3) is selected for study, compared to point F,
the corresponding oscillation period is longer, and ψ− also

Figure 1. Families of analytical soliton states, the progression of stable/unstable analytical solitons and their eigenvalues for linear stability,
associated with c2 =− 0.5 and c2 = 0.1 respectively. The parameters are chosen as: c0 = 1, wj = 0.6, Aj = 0.5 ( j=+ , 0, −). (b1)-(b4)
correspond to point A in (a1) where vj =− 0.8400, αj =− 0.5 ( j=+ , 0, −) and P= 1.6000, n= 0.5. (c1)-(c4) correspond to point B in
(a1) where vj =− 3.7725, αj =− 0.5 and P= 0.8000, n= 1.5. (d1)-(d4) correspond to point C in (a2) where vj =− 0.8400, αj =− 1.1
( j=+ , 0, −) and P= 1.6000, n= 0.5.
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begins to exhibit slight oscillations, as shown in figure 3(c1)-
(e4). This suggests that the oscillation of the double-hump
soliton states may be related to the magnitude of the energy and
indicates the dynamic stability of the double-hump soliton
against small perturbations.

Next, we turn our attention to studying the interaction
between Gaussian solitons and the solitons depicted in
figure 1 to figure 3. We consider the following initial condi-
tions
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where qj is the maximum amplitude of the exotic Gaussian
soliton. Figure 4(a1)-(a3) correspond to the case of analytical

solitons with c0= 1, c2=− 0.5, n= 0.5, wj= 0.6, Aj= 0.5,
P= 1.6000, vj=− 3.7725, and αj=− 0.5 ( j=+ , 0, −),
satisfying the initial condition (7); figure 4(b1)-(b3) corre-
spond to the case of numerical single-hump solitons (point D)
with P+ = 3.6600, P0= 4.6321, P−= 5.3079, μ+= 1.8563,
μ0= 1.8555, μ−= 1.8571, μ0= 1.7329, μ−= 1.7262, and
n= 0.5, satisfying the initial condition (7); figure 4(c1)-(c3)
correspond to the case of numerical double-hump solitons
(point F) with P+= 0.0400, P0= 0.0506, P−= 13.5547,
μ+= 0.7273, μ0= 0.6493, μ−= 0.6556, and n= 2, satisfy-
ing the initial condition (7); figure 4(d1)-(d3) correspond to
the case of numerical double-hump solitons (point G) with
P+= 0.3200, P0= 0.4050, P−= 12.8750, μ+= 0.7083,
μ0= 0.6319, μ−= 0.6497, and n= 2, satisfying the
initial condition (8). For figure 4(a1)-(a3), we choose
q+=q0= q−= 0.2, for figure 4(b1)-(b3), we choose
q+= q0= 0.05, q−= 0.3, while for figure 4(d1)-(d3),
we choose q+ = q0= 0.1, q−= 0.5. We notice that after
the interaction between the stable soliton states and the
exotic Gaussian solitons, both of them maintain their original
shapes and continue to propagate forward, as shown in

Figure 2. Families of numerical single-hump soliton states, the progression of stable/unstable numerical single-hump solitons and their
eigenvalues for linear stability, associated with different n. The parameters are chosen as: c0 = 1, c2 =− 0.5, w+ = w0 = w− = 2.5,
v+ = v0 = v− =− 3.8, α+ = α0 = α− =− 0.4.
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Figure 3. Families of numerical double-hump soliton states, the progression of stable numerical double-hump solitons and their energy flux
associated with n= 2. The parameters are chosen as: c0 = 1, c2 = 0.1, w+ = w0 = w− = 0.8, v+ = v0 = v− =− 6, α+ = α0 = α− =− 0.4.
And their maximum of ∣ ( )∣Im d for linear stability are all 10−7.
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figure 4(a1)-(c3). This indicates that an elastic collision
occurs between the soliton states and the exotic Gaussian
solitons. Moreover, some studies suggest that interactions
between solitons may trigger energy flow among the three

components. However as shown in figure 4(d1)-(d2), we
observe a specific scenario where the energy of ψ+ decreases,
and the energy of ψ0 increases, while the energy of ψ−

remains unchanged after the interaction between the exotic

Figure 4. Interactions of single-hump and double-hump soliton states with exotic Gaussian solitons. (a1)-(a3) correspond to analytical soliton
states at c0 = 1, c2 =− 0.5, n= 0.5, wj = 0.6, Aj = 0.5, P= 1.6000, vj =− 3.7725 and αj =− 0.5 ( j=+ , 0, −). (b1)-(b3) correspond to
numerical single-hump soliton states at n= 0.5. (c1)-(d3) correspond to numerical double-hump soliton states at n= 2.
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Gaussian solitons and the double-hump solitons. This can be
regarded as a special form of energy flow involving only two
components. In order to explore more properties about the
interaction, the corresponding energy flux are checked. As
illustrated in figure 5, the Poynting vectors of ψj(x, t) all keep
invariant. Moreover, the energy flux of the soliton states has
the same characteristics as that ψj(x, t) propagate, which
further verifies the correctness of figure 4.

4. Conclusions

In conclusion, we introduce  -symmetric generalized
Scarf-II potentials into three-coupled Gross–Pitaevskii
equations with two different scenarios of inter-component
interaction parameter values c0 and c2, and obtain corresp-
onding analytical/numerical soliton states and soliton famil-
ies. In both scenarios of parameter configurations, the

Figure 5. The energy flux of the interactions of single-hump and double-hump soliton states with exotic Gaussian solitons in figure 4. The
parameters are chosen the same as figure 4.
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analytical soliton families exhibit identical curve shapes, but
the stable region of the analytical soliton family curves sig-
nificantly increases under the condition of c2= 0.1. With the
condition of c2=− 0.5 (ferromagnetic), the single-hump
solution families obtained through iterative algorithms shift
towards smaller values of μ as n increases. Besides, in the
case of c2= 0.1 (antiferromagnetic), we obtain point F whose
corresponding double-hump soliton states exhibit periodic
oscillations while conserving the energy during propagation,
within the double-hump soliton families. Notably, the
phenomenon of energy exchange only existing between ψ+

and ψ0, with ψ− remaining constant, is observed. Moreover,
after the interaction between the double-hump soliton states
and the exotic Gaussian solitons, the energy of ψ+ decreases
and the energy of ψ0 increases, while the energy of ψ−

unchanged. This phenomenon can be seen as collisions trig-
gering the flow of energy among the three components. These
findings could contribute to a deeper understanding of soli-
tons in Bose–Einstein condensates with  -symmetric
potentials and potentially aid in designing relevant physics
experiments.
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Appendix

The matrix L of the linear eigenvalue problem, which is
derived during linear stability analysis, has a specific form as
follows:
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